
Title: No Arithmetical Determinacy From Supertask Computations

Long Abstract:

Call arithmetical determinacy the thesis that any statement in arithmetic is

determinately true or determinately false. Benacerraf and Putnam (1984) argue the thesis

can be defended by appealing to so-called ‘supertask computations’.

To explain. Consider first Goldbach’s Conjecture: the claim that every even number

greater than two is the sum of two primes. The conjecture has a simple form being

expressible in arithmetic. And the statement ‘if x is an even number greater than two

then x is the sum of two prime numbers’ is also expressible. To fix some terminology, let

GB(x) be a formula in the language of arithmetic abbreviating the latter statement and let

GB(n) be the obvious substitution. Goldbach’s Conjecture is then the sentence ∀x GB(x).

It is easy to set up a computable procedure deciding the truth-value of each GB(n)

in a finite time. But suppose. further, it is possible for a Turing-like machine to decide

in a finite time every GB(n) by, for instance, performing each step faster and faster. It

takes half a minute to check n = 0, a quarter to check n = 1 and so on. It is clear the

computation will describe a supertask. And, by running this ‘supertask computation’, we

could check in one minute if Goldbach’s Conjecture is either true or false.

Now, suppose Goldbach’s Conjecture is true. Then there is a fact of the matter –

to wit, the result of the computation – determining the statement’s truth-value. If this

is the case then we should take the result of the computation as a constraint on our

arithmetical practice, meaning that in any intended model of arithmetic the Goldbach’s

Conjecture is true. This is, Goldbach’s Conjecture is determinately true. (And a parallel

argument if the Conjecture is false). As a result, the computation secures the determinacy

of Goldbach’s Conjecture. Furthermore, since the procedure can be generalized to formulas

of arbitrary complexity, Benacerraf and Putnam argue that supertask computations secure

arithmetical determinacy.

In the talk, I have two main goals. First, I discuss an objection presented by Warren

and Waxman (2020) against Benacerraf and Putnam’s argument. Warren and Waxman

argue that even if we assume that the supertask computation does decide that every GB(n)

is true – this is, the computation establishes that GB(n) is true for every standard numeral

n – we still cannot infer that Goldbach’s Conjecture is also true. On the contrary, the

Conjecture is the universal sentence ∀x GB(x); and to pass from every instance of GB(n)

to this universal sentence we should, they argue, assume the ω-rule:

ω-rule:
ϕ(0) ϕ(1) ϕ(2) ϕ(3) . . .

∀xϕ(x)

But Warren & Waxman observe that nothing in the supertask computation justifies

this last step. The ω-rule does not follow from the results of the computation but is

instead an extra assumption required to infer the truth of the universal claim. Worse:

augmenting Peano Arithmetic (PA) or any other theory extending Robinson’s Arithmetic

1



with the ω-rule generates the theory of True Arithmetic (TA). And all models of TA

have the same first-order theory. Therefore, adding the ω-rule to our arithmetical system

generates a stronger theory whose models decide any sentence, of whatever complexity,

in the exact same manner. As a consequence, no indeterminacy will arise: any sentence

will already be determinately true or determinately false. In sum, for Benacerraf and

Putnam’s argument to work, Warren and Waxman argue that we must assume the ω-rule

which already secures arithmetical determinacy all by itself, quite independently of

any supertask computation. This renders Benacerraf and Putnam’s argument redundant.

Though I am sympathetic to their objection, I explain contra Warren and Waxman

that the problematic ω-rule is dispensable and therefore does not pose a challenge to

Benacerraf and Putnam. In particular, I argue for the following two claims:

(i) I explain how inferring the universal ∀x GB(x) from the many GB(0), GB(1), ...,

can be done inside arithmetical systems weaker than TA by suitably weakening the

ω-rule. This shows that Warren and Waxman’s objection is conditional on the

gratuitous assumption that ∀x GB(x) is only inferred given the introduction of the

strong ω-rule:

(ii) More important, I explain how meta-theoretic rules governing the semantics of the

universal quantifier already allow us to infer the universal ∀x GB(x) from the many

GB(0), GB(1), ... This again shows that the ω-rule is dispensable blocking Warren

and Waxman’s objection.

My second aim in the talk is to elaborate a new objection against Benacerraf and

Putnam. To explain my argument consider, this time, some Gödel-sentence for PA, like

GödelPA := ¬∃x Proof (x,pGödelPAq). We know that, on the assumption that PA is con-

sistent, PA 6` GödelPA. This means that for every standard numeral n: PA ` ¬Proof (n,
pGödelPAq). Hence, there is no n ∈ N such that n codes a proof of GödelPA.

Nonetheless, consider a supertask computation e which checks each number and looks

for (a code of) a proof for the Gödel-sentence. By the preceding, we know that if e runs

inside the standard model the computation will never find a proof of the Gödel-sentence.

As a result, the supertask computation will say that the Gödel-sentence is true and, by

Benacerraf and Putnam’s argument, the sentence is determinately true.

Yet, why does the computation never find a proof? This, I take it, is explained by

the fact that there is no standard number which codes a proof of GödelPA. After all, the

sentence is constructed in such a way that there can be no relevant PA-proof on pain of

PA’s own inconsistency. But this only passes the buck: why is the computation looking

only at standard numbers or, more precisely, why is e running only in the standard model?

Note this question is key. For it is easy to show that there is a non-standard model

M satisfying PA + ¬GödelPA with some non-standard m ∈ M − N which is a witness for

M |= ∃x Proof (x,pGödelPAq). Now, suppose we run e inside M instead. The computation

goes through each element of the model’s domain searching for a number encoding a

2



proof of GödelPA. If the computation only looks at the standard part of M it never finds

such a proof; but, of course, if it ‘waits’ a non-standard amount of time e will eventually

find a non-standard instance falsifying the sentence. And observe that if, again as per

Benacerraf and Putnam’s argument, the result of a supertask computation is enough to

secure truth-determinacy we must conclude that the Gödel-sentence is determinately false.

As a result, I conclude that Benacerraf and Putnam’s argument commits us to the

existence of arithmetical sentences which are both determinately true and determinately

false, and hence to contradictions.

Time permitting, I discuss (what I think to be) an intuitive objection to my argument

based on Tennenbaum’s Theorem and prove it wanting. Somewhat loosely, the objection

is the following. The upholder of Benacerraf and Putnam’s argument may require that

only decision procedures running inside computable models be intended and, therefore,

that only these can play a role in matters of truth-determinacy. The upholder will then

appeal to Tennenbaum’s Theorem, according to which the isomorphism-type containing

the standard model is the sole computable. And since the model M of PA + ¬GödelPA,

inside which the computation e runs, is necessarily non-standard it follows that the up-

holder can, by using Tennenbaum’s Theorem, dismiss this model has having little bearing

on truth-determinacy.

Based on a recent result by Hamkins (2016), I argue that appealing to Tennnebaum’s

Theorem is in this case circular. In particular, I explain that in order to use Tennen-

baum’s Theorem, the upholder must already assume a privileged notion of ‘computabil-

ity’ where decisions procedures running inside non-standard models are automatically

non-computable. Therefore the upholder is already assuming what she wants to prove:

that the model M of PA + ¬GödelPA is not computable, and so she begs the question.

I conclude that supertask computations and Benacerraf and Putnam’s argument do

not establish arithmetical determinacy.

References

Benacerraf, P. & Putnam, H. (1984) ‘Introduction’ In P. Benacerraf & H. Putnam (eds),

Philosophy of Mathematics: Selected Readings (2nd ed) (Cambridge: Cambridge

University Press), 1-38.

Hamkins, J. (2016) ‘Every function can be computable!’. In: http://jdh.hamkins.org/

every-function-can-be-computable/

Warren, J. & Waxman, D. (2020) ‘Supertasks and arithmetical truth’, Philosophical Stud-

ies, 177(5), 1275-1282.

3

http://jdh.hamkins.org/every-function-can-be-computable/
http://jdh.hamkins.org/every-function-can-be-computable/

